Fluctuations of conserved charges within dynamic models of heavy-ion collisions

Marlene Nahrgang

SUBATECH, Nantes & FIAS, Frankfurt

FCR workshop, BNL, October 3rd, 2011

... be brave and solve

$$Z(T, \mu_B) = \int \mathcal{D}(A, q, q^{\dagger}) e^{-S_{\text{QCD}}^E}$$

ab initio and nonperturbatively,

... be strong and collide heavy ions at ultrarelativistic energies,

$$\mathcal{L}_{ ext{eff}}$$

... be brave and solve

$$Z(T, \mu_B) = \int \mathcal{D}(A, q, q^{\dagger}) e^{-S_{QCD}^E}$$

ab initio and nonperturbatively,

... be strong and collide heavy ions at ultrarelativistic energies,

$$\mathcal{L}_{ ext{eff}}$$

... be brave and solve

$$Z(T, \mu_B) = \int \mathcal{D}(A, q, q^{\dagger}) e^{-S_{QCD}^E}$$

ab initio and nonperturbatively,

... be strong and collide heavy ions at ultrarelativistic energies,

trossover $\mu_B=0 \qquad \qquad \mu_B$ $T \qquad \qquad \text{quark gluon plasma}$ $\text{hadron gas} \qquad \text{nuclei}$ $\mu_B=0 \qquad \qquad \mu_B$

$$\mathcal{L}_{\mathsf{eff}}$$

... be brave and solve

$$Z(T, \mu_B) = \int \mathcal{D}(A, q, q^{\dagger}) e^{-S_{QCD}^E}$$

ab initio and nonperturbatively,

... be strong and collide heavy ions at ultrarelativistic energies,

Critical point

•
$$m_{\sigma}^2 = \frac{\partial^2 V}{\partial \sigma^2} \rightarrow 0$$

- correlation length diverges $\xi = \frac{1}{m_{c}} \to \infty$
- universality classes for QCD: $\mathcal{O}(4)$ Ising model in $3d \Rightarrow \langle \sigma^2 \rangle \propto \xi^2$
- renormalization group
- critical opalescence

⇒ Large fluctuations in thermal systems!

First order phase transitions

- two degenerate minima separated by a barrier
- latent heat
- phase coexistence
- supercooling effects in nonequilibrium situations
- nucleation
- spinodal decomposition

```
(I.N.Mishustin, PRL 82 (1999); Ph.Chomaz, M.Colonna,
```

J.Randrup, Physics Reports 389 (2004))

⇒ (Large) fluctuations in nonequilibrium situations!

Fluctuations at the critical point

non-monotonic fluctuations in pion and proton multiplicities

$$\langle \Delta n_p \Delta n_k \rangle = v_p^2 \delta_{pk} + \frac{1}{m_\sigma^2} \frac{G^2}{T} \frac{v_p^2 v_k^2}{\omega_p \omega_k}$$

(M. A. Stephanov, K. Rajagopal and E. V. Shuryak, PRD 60 (1999))

(NA49 collaboration J. Phys. G 35 (2008))

BUT: critical slowing down

(B. Berdnikov and K. Rajagopal, PRD 61 (2000))

Fluctuation measures based on the second moments are not conclusive about the critical behavior.

Fluctuations at the critical point

non-monotonic fluctuations in pion and proton multiplicities

$$\langle \Delta n_p \Delta n_k \rangle = v_p^2 \delta_{pk} + \frac{1}{m_\sigma^2} \frac{G^2}{T} \frac{v_p^2 v_k^2}{\omega_p \omega_k}$$

(M. A. Stephanov, K. Rajagopal and E. V. Shuryak, PRD 60 (1999))

BUT: critical slowing down

(B. Berdnikov and K. Rajagopal, PRD 61 (2000))

Fluctuation measures based on the second moments are not conclusive about the critical behavior.

Definition of the kurtosis

susceptibilities of conserved charges (*N*: net-baryon, net-charge number) or the experimentally feasible net-proton number

$$\chi_n(T, \mu_N) = \frac{1}{VT^3} \frac{\partial^n \ln Z(V, T, \mu_N)}{\partial \mu_N^n} \bigg|_T$$

quadratic and quartic susceptibilities:

$$\begin{split} \chi_2 &= \frac{1}{VT^3} \langle \delta N^2 \rangle \\ \chi_4 &= \frac{1}{VT^3} (\langle \delta N^4 \rangle - 3 \langle \delta N^2 \rangle^2) \end{split}$$

effective kurtosis:

$$K^{\mathrm{eff}} = rac{\chi_4}{\chi_2} = rac{\langle \delta N^4 \rangle}{\langle \delta N^2 \rangle} - 3 \langle \delta N^2 \rangle \equiv \kappa \sigma^2 \ .$$

Higher moments at the critical point

Higher moments of the distribution of conserved quantities are more sensitive to critical phenomena.

$$\kappa \propto \xi^7$$

(M. A. Stephanov, PRL 102, 032301 (2009))

The kurtosis is negative at the critical point!

(M. A. Stephanov, PRL 107, 052301, (2011))

Kurtosis on the lattice

Thermodynamic susceptibilities can be calculated on the lattice.

Reproduces the HRG below T_c and the Stefan-Boltzmann limit at high temperatures.

 \Rightarrow It has the potential to probe the confined and the deconfined phase of QCD.

M. Cheng et al., Phys. Rev. D 79 (2009) 074505

Kurtosis in effective models

The effective kurtosis can be calculated in effective models, e.g. in the Polyakov-loop extended quark-meson model:

(V. Skokov, B. Stokic, B. Friman, K. Redlich, Phys. Rev. C83 (2011) 054904.)

Motivation

- ► Fluctuations have so far been investigated in static systems.
- However, systems created in a heavy-ion collisions are finite in size and time and inhomogeneous.
- Necessary to propagate fluctuations explicitly!
- Nonequilibrium chiral fluid dynamics:
 - fluid dynamics +
 - phase transition model +
 - dissipation and noise

Nonequilibrium chiral fluid dynamics

Langevin equation for the sigma field: damping and noise from the interaction with the quarks

$$\partial_{\mu}\partial^{\mu}\sigma + rac{\delta U}{\delta\sigma} + g
ho_{s} + \eta\partial_{t}\sigma = \xi$$

Fluid dynamic expansion of the quark fluid = heat bath

$$T_{\rm q}^{\mu\nu}=(e+p)u^{\mu}u^{\nu}-pg^{\mu\nu}$$

Energy and momentum exchange

$$\partial_{\mu}T_{\mathrm{q}}^{\mu
u}=\mathcal{S}^{
u}=-\partial_{\mu}T_{\sigma}^{\mu
u}$$

Selfconsistent approach within the two-particle irreducible effective action!

Semiclassical equation of motion for the sigma field

$$\partial_{\mu}\partial^{\mu}\sigma + rac{\delta U}{\delta \sigma} + g
ho_{s} + \eta\partial_{t}\sigma = \xi$$

damping term η and noise ξ for $\mathbf{k} = 0$

$$\eta = g^2 rac{d_q}{\pi} \left(1 - 2 n_{
m F} \left(rac{m_\sigma}{2}
ight)
ight) rac{\left(rac{m_\sigma^2}{4} - m_q^2
ight)^{rac{3}{2}}}{m_\sigma^2} \int\limits_{\mathbb{R}^3 ext{ odd}}^{\frac{1}{2}} \int\limits$$

below T_c damping by the interaction with the hard pion modes, apply $\eta=2.2/{
m fm}$ from $_{(T.~S.~Biro~and~C.~Greiner,~PRL~79~(1997))}$

Reheating and supercooling

- oscillations at the critical point
- supercooling of the system at the first order phase transition
- reheating effect visible at the first order phase transition

MN, M. Bleicher, S. Leupold, I. Mishustin, arXiv:1105.1962

Intensity of sigma fluctuations

$$\frac{\mathrm{d}N_{\sigma}}{\mathrm{d}^{3}k} = \frac{(\omega_{k}^{2}|\sigma_{k}|^{2} + |\partial_{t}\sigma_{k}|^{2})}{(2\pi)^{3}2\omega_{k}}$$

$$\omega_{k} = \sqrt{|k|^{2} + m_{\sigma}^{2}}$$

$$m_{\sigma} = \sqrt{\partial^{2}V_{\mathrm{eff}}/\partial\sigma^{2}|_{\sigma = \sigma_{\mathrm{eq}}}}$$

$$\int_{0}^{60} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}$$

deviation from equilibrium

critical point

Pion fluctuations

So far: pion fluctuations were not considered and $\vec{\pi} = \langle \vec{\pi} \rangle = 0$. Now: extend the model to explicitly propagate pion fluctuations, too.

Larger isospin fluctuations in a scenario with a first order phase transition!

Correlation length

$$\xi_1$$
: averaged correlation length from $\xi^{-1} = \sqrt{\frac{\partial^2 \Omega}{\partial \sigma^2}}|_{\sigma = \sigma(x)}$

 ξ_2 : correlation length obtained from fits to $G(r) = \sigma_{\text{eq}}^2 + \frac{1}{r} \exp(-\frac{r}{\xi})$

$$\xi_3$$
: averaged correlation length from $\xi^{-1}=\sqrt{\frac{\partial^2\Omega}{\partial\sigma^2}}\big|_{\sigma=\sigma_{eq}}$

Relativistic Transport Approach

cover more effects in realistic simulations of heavy-ion collisions, here: UrQMD (www.urqmd.org)

issues:

- eventwise baryon number and charge conservation instead of grandcanonical ensembles
- centrality selection and centrality bin width effects

Analytic toy model

Baryon number conservation limits fluctuations of net-baryon number.

$$P_{\mu}(N, C) = \mathcal{N}(\mu, C)e^{-\mu}\frac{\mu^{N}}{N!}$$
 on $[\mu - C, \mu + C]$

 μ : the expectation value of the original Poisson distribution, $\mathcal{N}(\mu, \mathbf{C})$: normalization factor, $\mathbf{C}>0$: cut parameter

$$C = \alpha \sqrt{\mu} \left(1 - \left(\frac{\mu}{N_{\text{tot}}} \right)^2 \right).$$

 $\alpha = 3$, $N_{\text{tot}} = 416$.

- An increase of the average net-baryon number does not lead to stronger fluctuations.
- At the upper limit of $N_{\rm tot} = 416$ the distribution changes to a δ -function $(K_{\delta}^{\rm eff} = 0)$.

Net-baryon number distribution in UrQMD

- central Pb+Pb collisions at E_{lab} = 20AGeV
- fit to a Poisson distribution
- shoulders are enhanced
- tails are cut

decrease from
$$K_{Poisson}^{eff}=1$$
 to $K_{UrOMD}^{eff}=-22.2$

ratio of UrQMD to Poisson distribution

Rapidity window dependence of the effective kurtosis

- Same qualitative behavior of the net-baryon kurtosis as expected from the analytic toy model.
- $E_{lab} = 158AGeV$
- The net-proton kurtosis only slightly follows this trend.
- The net-charge kurtosis is not influenced, but error bars are larger.

► For small net-baryon numbers in the acceptance, the values of net-baryon, net-proton and net-charge kurtosis are compatible with values of 0 — 1.

Energy dependence of the effective kurtosis

- adapting the rapidity window to fix the mean net-baryon number
- net-baryon effective kurtosis does not show an energy dependence
- fixed rapidity cut
- the net-baryon number varies with \sqrt{s}
- ▶ for lower √s K^{eff} becomes increasingly negative
- at $E_{\mathrm{lab}} = 2A\mathrm{GeV}$: $\langle N_{B-\bar{B}} \rangle \simeq 240$

Centrality selection, e.g. by impact parameter

We investigate central collisions with $b \le 2.75$ fm. The superposition of two Gauss distributions (with mean $\mu_{1,2}$ and variance $\sigma_{1,2}$) has a negative kurtosis

$$\textit{K}_{2} = \frac{1/8\Delta\mu^{4} + 3\Sigma^{2}\Delta\mu^{2} + 6\Sigma^{4}}{1/8\Delta\mu^{4} + \Sigma^{2}\Delta\mu^{2} + 2\Sigma^{4}} - 3 < 0$$

with
$$\Delta\mu=|\mu_2-\mu_1|$$
 and $\Sigma^2=\sigma_1^2+\sigma_2^2$.

The distribution approaches a box-distribution with a $K_{\text{box}} = -1.2$.

Effects of centrality selection

Suggestion by STAR to reduce centrality bin width effects:

- calculate moments for each fixed N_{charge} in one wider centrality bin
- take the weighted average

(MN et al., QM 2011 proceedings)

(STAR collaboration, Nucl.Phys. A862-863 (2011))

problems:

- (anti-) protons constitute a larger fraction of all charged particles with decreasing energy
- fixing N_{charge} puts a bias on the fluctuations

Summary

- nonequilibrium sigma and pion fluctuations, correlation length in chiral fluid dynamics
- effective kurtosis within a transport model of heavy-ion collisions
- lacktriangle negative values for net-baryon $K^{
 m eff}$ below $\sqrt{s}=$ 100 GeV
- baryon number conservation qualitatively described by a cut Poisson distribution
- centrality selection remains a crucial issue!

Outlook:

- further study the acceptance effects in UrQMD
- extend nonequilibrium chiral fluid dynamics to study event-by-event fluctuations

